Prophet secretary through blind strategies
نویسندگان
چکیده
منابع مشابه
Prophet Secretary for Combinatorial Auctions and Matroids
The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg [KW12] and Feldman et al. ...
متن کاملProphet Secretary: Surpassing the 1-1/e Barrier
In the Prophet Secretary problem, samples from a known set of probability distributions arrive one by one in a uniformly random order, and an algorithm must irrevocably pick one of the samples as soon as it arrives. The goal is to maximize the expected value of the sample picked relative to the expected maximum of the distributions. This is one of the most simple and fundamental problems in onl...
متن کاملBlind former British Home Secretary backs new cell phone initiative.
A blind former British Home Secretary, drafter of progressive disability laws and international advocate of equal rights for the disabled, David Blunkett, wants to champion a South African cell phone initiative giving disabled people internet access. However, while most South Africans now carry cell phones, the two leading networks, MTN and Vodacom, say the cost of phones sophisticated enough t...
متن کاملPolymatroid Prophet Inequalities
Consider a gambler and a prophet who observe a sequence of independent, non-negative numbers. The gambler sees the numbers one-by-one whereas the prophet sees the entire sequence at once. The goal of both is to decide on fractions of each number they want to keep so as to maximize the weighted fractional sum of the numbers chosen. The classic result of Krengel and Sucheston (1977-78) asserts th...
متن کاملCombinatorial Prophet Inequalities
We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For a monotone subadditive objective function over an arbitrary downward-closed feasibility constraint, we give an O(log n log r)-competitive algorithm (where r is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2020
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-020-01544-8